運用しているシステムの1つにメール配信を利用してシューズアイテムを訴求するシステムがあり、私たちのチームではユーザーが興味を惹くアイテムを推薦するための機械学習システムを開発・運用しています。この推薦システムの実績を定常的にモニタリングするために、Looker Studio(旧 Data Portal)を用いてダッシュボードを構築していました。さらに、このダッシュボードに連携するためのデータを集計するシステム「モニタリングシステム」を運用しており、以下の図で構成されます。
Vertex AI PipelinesはCloud SchedulerとCloud Functionsによって1日1回定期実行されます。Vertex AI PipelinesではBigQueryのジョブを実行し、Looker Studioのダッシュボードに表示しやすい形式でデータを整形してその結果を連携用のテーブルとして保存します。Looker Studioではこの中間テーブルからデータを取得してダッシュボードを表示しています。また、週に1度、指標の変化率を以下の様にSlackで通知していました。
メール配信数: N 件(前週比:N %)
週間売上: N 円(前週比:N %)
1配信あたり流入数: N 件/配信(前週差:N pt)
1配信あたり注文数: N 件/配信(前週差:N pt)
1配信あたり売上: N 円/配信(前週差:N pt)
Vertex AI Pipelinesは一般的に機械学習システムのワークフロー管理ツールとして使用されますが、私たちのチームでは推薦システムの実績をモニタリングする用途でも使用しています。Vertex AI Pipelinesの導入事例については過去のテックブログでも紹介していますのでご参照ください。