合同会社DILIGENCEでは一緒に働く仲間を募集しています
混合計画(混合モデルではない)の二元配置分散分析。要するに被験者間、被験者内計画。car packageでMANOVAで実行してみる。詳細は下記の通り。
> dat<-read.delim("clipboard") #データ読み込み
> head(dat) #データの冒頭部だけ見せるとこんな感じ.データの中身はこんな感じ.
gender trial1 trial2 trial3
1 male 10.0121 14.0931 15.8768
2 male 16.1474 15.9080 20.8417
3 male 57.0574 47.2407 75.4579
4 male 24.4516 27.1586 28.2324
5 male 24.4516 27.1586 28.2324
6 male 15.5521 16.7581 20.1324
> #genderはmaleとfemaleがある(ここにはmaleしか出てないけどね…).反復測定したデータがtrial1~3
> #carパッケージで反復測定するときは横に被験者内データ(反復測定データ),縦に被験者間データが来る.
> dat$factgender<-factor(dat$gender) #今度は読み込んだデータに被験者間要因で使用するデータを追加.これを分散分析のときの要因に使う.genderをそのまま使っちゃだめ.
> contrasts(dat$factgender)<-"contr.Sum" #おまじない(詳細は割愛,要するにカテゴリカルデータの変換のため.やらないとおかしくなっちゃう)
> head(dat)
gender trial1 trial2 trial3 factgender
1 male 10.0121 14.0931 15.8768 male
2 male 16.1474 15.9080 20.8417 male
3 male 57.0574 47.2407 75.4579 male
4 male 24.4516 27.1586 28.2324 male
5 male 24.4516 27.1586 28.2324 male
6 male 15.5521 16.7581 20.1324 male
>
> trial<-factor(c("t1","t2","t3")) #被験者内要因を作成
> trial<-data.frame(trialdata=trial) #これは,carパッケージで分析するときに,被験者内要因との関連付けで使う.
> trial
trialdata
1 t1
2 t2
3 t3
>
>
> model1<-lm(cbind(trial1,trial2,trial3)~factgender,data = dat) #まずはモデルをつくる.
>
>
> library(car) #carパッケージ読み込み
> anovamodel1<-Anova(model1,idata = trial,idesign = ~trialdata,type = "III") #carパッケージ読み込み タイプⅢで計算.
> summary(anovamodel1) #なお,Summaryの中は若干書き換えてあって数字はでたらめです.
Type III Repeated Measures MANOVA Tests:
------------------------------------------
Term: (Intercept)
Response transformation matrix:
(Intercept)
trial1 1
trial2 1
trial3 1
Sum of squares and products for the hypothesis:
(Intercept)
(Intercept) 296953
Multivariate Tests: (Intercept)
Df test stat approx F num Df den Df Pr(>F)
Pillai 1 0.869420 133.1632 1 20 2.7053e-10 ***
Wilks 1 0.130580 133.1632 1 20 2.7053e-10 ***
Hotelling-Lawley 1 6.658162 133.1632 1 20 2.7053e-10 ***
Roy 1 6.658162 133.1632 1 20 2.7053e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
------------------------------------------
Term: factgender
Response transformation matrix:
(Intercept)
trial1 1
trial2 1
trial3 1
Sum of squares and products for the hypothesis:
(Intercept)
(Intercept) 38965.19
Multivariate Tests: factgender
Df test stat approx F num Df den Df Pr(>F)
Pillai 1 0.4662858 17.47324 1 20 0.00046171 ***
Wilks 1 0.5337142 17.47324 1 20 0.00046171 ***
Hotelling-Lawley 1 0.8736620 17.47324 1 20 0.00046171 ***
Roy 1 0.8736620 17.47324 1 20 0.00046171 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
------------------------------------------
Term: trialdata
Response transformation matrix:
trialdata1 trialdata2
trial1 1 0
trial2 0 1
trial3 -1 -1
Sum of squares and products for the hypothesis:
trialdata1 trialdata2
trialdata1 484.8 643.5
trialdata2 643.57 854.1
Multivariate Tests: trialdata
Df test stat approx F num Df den Df Pr(>F)
Pillai 1 0.3691122 5.551122 2 19 0.001125 *
Wilks 1 0.6301122 5.551122 2 19 0.002125 *
Hotelling-Lawley 1 0.5841122 5.551122 2 19 0.003125 *
Roy 1 0.5841122 5.551122 2 19 0.004125 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
------------------------------------------
Term: factgender:trialdata
Response transformation matrix:
trialdata1 trialdata2
trial1 1 0
trial2 0 1
trial3 -1 -1
Sum of squares and products for the hypothesis:
trialdata1 trialdata2
trialdata1 194.223 178.047
trialdata2 178.047 163.226
Multivariate Tests: factgender:trialdata
Df test stat approx F num Df den Df Pr(>F)
Pillai 1 0.615513 14.43363 2 19 0.0001825 ***
Wilks 1 0.382487 14.43363 2 19 0.000825 ***
Hotelling-Lawley 1 1.164298 14.43363 2 19 0.00025 ***
Roy 1 1.617298 14.43363 2 19 0.00025 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
SS num Df Error SS den Df F Pr(>F)
(Intercept) 98984 1 14866.6 20 123.1632 2.405e-10 ***
factgender 12988 1 14866.6 20 17.4432 0.0004517 ***
trialdata 464 2 2846.3 40 3.2353 0.0448483 *
factgender:trialdata 1198 2 1866.3 40 8.3509 0.0010251 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Mauchly Tests for Sphericity
Test statistic p-value
trialdata 0.76747 0.810921
factgender:trialdata 0.76747 0.809421
Greenhouse-Geisser and Huynh-Feldt Corrections
for Departure from Sphericity
GG eps Pr(>F[GG])
trialdata 0.81134 0.061742 .
factgender:trialdata 0.81134 0.002172 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
HF eps Pr(>F[HF])
trialdata 0.8727091 0.057594398
factgender:trialdata 0.8727091 0.001644132
>